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Location: Sant’Anna School of Advanced Studies, Pisa 
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applications. 

The event is open to Master students, PhD candidates, and Postdoctoral 
researchers interested in computational science, applied mathematics, engineering, and 
related fields. 

Further details about the program can be found in the attached PDF. 
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Course on Bayesian Assimilation, Updating and an introduction to model order 
reduction techniques 
 
The course is going to take the example of a diagnostic or predictive digital twin as an 
example. In such a system there may be quantities of interest (QoIs) which are not directly 
observable and have to be inferred from the measurement of other, related, quantities and 
the mathematical resp. computational model of the digital twin. These QoIs may include 
properties of the digital twin itself, i.e. parameters in the mathematical model. This process is 
sometimes (lingo from the weather forecast community) called data assimilation. It is usually 
what is mathematically termed an inverse problem, and it is usually ill-posed. Thus to 
approach it numerically, it has to be transformed into a well-posed problem. One technique 
to do this is to use a probabilistic description of the whole procedure and engage in 
uncertainty quantification (UQ). This goes along with using a probabilistic graphical model to 
describe the temporal evolution of the physical and digital twin, where the Bayesian directed 
graph describes the transfer of information in terms of conditional probabilities resp. 
conditioned random variables. All the parameters appearing in such a mathematical model 
of the digital twin make this a parametric mathematical model; some of the parameters will 
describe the probabilistic part used in the Bayesian assimilation. One common theme 
throughout the course will be the effort to represent possibly complicated mathematical 
objects in terms of vector spaces, algebras, and linear mappings. One of the reasons for this 
is that upon concrete representation and discretisation, this becomes a problem in numerical 
multilinear algebra, which makes it computationally accessible. In the last part of the course 
we will focus on common techniques to solve parametric problems governed by partial 
differential equations efficiently. We will focus on both intrusive and non-intrusive 
approaches.  
 
Time Plan of the Individual Lectures: 
 

 Mon 29/09 Tue 30/09 Wed 01/10 

9:00 - 9:45 Lecture 1 Lecture 4 Lecture 7 

9:45 - 10:00 Break Break Break 

10:00 - 10:45 Lecture 1 Lecture 4 Lecture 7 

10:45 - 11:15 Break Break Break 

11:15 - 12:00 Lecture 2 Lecture 5 Lecture 8 

12:00 - 12:15 Break Break Break 

12:15 - 13:00 Lecture 2 Lecture 5 Lecture 8 

12:00 - 14:30 Lunch Break Lunch Break Lunch Break 

14:30 - 15:15 Lecture 3 Lecture 6 Lecture 9 

15:15 - 15:30 Break Break Break 

15:30 - 16:15 Lecture 3 Lecture 6 Lecture 9 

 

●​ Room 4, Palazzo Boyl, Via Santa Cecilia, 24, Pisa 

●​ Room 6, Sant’Anna Main Campus, Piazza Martiri della Libertà, 33, Pisa  



A description of the individual lectures follows:  
 
Lecture 1: Analysis of Parametric Models - Lecturer: Prof. Hermann G. Matthies - TU 
Braunschweig 
 
Parametric models are understood to be functions of some parameters with values in a 
vector space. Examples are parameter dependent operators — linear and non-linear, 
parametric right-hand sides or forcing terms, boundary conditions, parametric matrices, and, 
last but not least, the solutions to parametric equations. The parameters in question could be 
used for e.g. optimisation, control, describing different environments, or they could be 
uncertain. Abstractly, such a map from a set of parameters into a vector space can be 
associated with a linear map, which carries the same information and is in some cases a 
true generalisation. A linear map is a much more structured object than a general map from 
aparameter space into a vector space, and allows one to use advanced analytical tools for 
their analysis, such as various decompositions and expansions, like the SVD (singular value 
decomposition) and spectral analysis. It also shows a direct link to reproducing kernel Hilbert 
spaces (RKHS), as the set of parameters is replaced by a vector space of real valued 
functions, again an object with structure. These techniques lead to tensor representations, 
which effectively introduce a new set of parameters — these real valued functions — so that 
the parametric map is linear resp. affine in these new parameters. In many reduced order 
methods (ROMs), e.g. the reduced basis technique, this is an important pre-condition, which 
can be achieved with the proposed analytical tools for any parametric object. Allowing for a 
bit more structure on the set of parameters, one can introduce analogues of the correlation 
operator and its kernel twin. Factorisations of these operators provides additional 
representations, and in fact any factorisation corresponds to a representation of the 
parametric map. The well known Karhunen-Loève expansion is one example of this. 
Allowing for a bit more structure on the side of the vector space everything is mapped to, the 
focus changes on how to preserve that kind of structure in a tensor-product like 
approximation. We will touch on symmetries, positivity (positive definite matrices), and Lie 
groups like the orthogonal group.  
 
Lecture 2: Algebras and Vector Spaces of Random Variables - Lecturer: Prof. 
Hermann G. Matthies - TU Braunschweig 
 
Assuming that the participants know the basics of probability theory, this will be a refresher 
stressing an algebraic view of probability — such as it is also used e.g. in quantum 
computing. But at the start there will be short discussion of uncertainty in general, and 
different proposals — touching a bit on the history of the subject — on how to model it 
mathematically, and the properties and possibilities of such different models. Hilbert, in his 
1900 so-called "problems lecture", formulated as 6th problem the challenge to find an 
axiomatic basis for mechanics and probability. Kolmogorov's 1933 "Grundbegriffe" 
monograph was widely accepted as an adequate answer to this challenge regarding the 
axiomatisation of — one has to say now — "classical" probability. Coincidentally, 1900 is 
also the year when Planck formulated his thesis of energy quanta, which would give rise to 
quantum theory, and which requires a new probability theory. This became clear after 
Heisenberg's 1925 paper and his Göttingen colleagues' works afterwards, which together 
with Dirac introduced the algebraic point of view, culminating in von Neumann's 1932 
monograph on the widely known Hilbert space representation of quantum mechanics; which 



actually appeared before Kolmogorov's monograph. The main difference between the 
classical and the "new" probability lay in the non-commutativity of random variables. Today 
there are also other areas known where such quantum like behaviour (QLB) seems to occur. 
The algebraic view offers a way on how to treat both classical andquantum like phenomena 
in a unified mathematical setting. And although probabilists today seem to be happy with 
Kolmogorov's approach based on measure theory, it may be interesting to look at the subject 
through a different pair of glasses. This algebraic view also offers a more direct way to 
address random variables with values in infinite dimensional spaces, something which with 
classical measure theory can only be done in a somewhat circumlocutory fashion. It also 
helps to separate purely algebraic questions from analytical ones, but of course thrives in the 
interplay of both. Without wanting to present a strict axiomatic derivation, the start will be an 
early — and in the light of modern theory also abstract algebraic — view on random 
variables, as can be found implicitly in the work of early probabilists like the Bernoullis. Their 
properties are sketched as emanating from simple operational requirements regarding 
random variables, the mean or expectation (also called the “state” in physics lingo), as well 
as sampling or observations. Concrete representations of this abstract setting connect it with 
algebras of linear mappings and the spectral theory of these, and one may recover 
Kolmogorov's classical characterisation as one particular representation. The basic 
foundation will thus not be the Kolmogorovean model of a measure space and a probability 
measure, but rather algebras of random variables (RVs) together with the expectation 
functional. This will be used to bootstrap to a basic Hilbert space of RVs, and associated 
Banach spaces. This introduces a functional analytic setting and topologies which give rise 
to notions of convergence, and new RVs as limits in the completion of basic RV algebras. 
The basic descriptors — mathematical representations — of random variables will be 
discussed. Well-known notions like correlation and independence will be given an algebraic 
resp. geometric interpretation. One important subject is how to compute functions of random 
variables beyond polynomials, something which is inherent in the definition of an algebra. 
Here the representation of RVs as liner mappings combined with spectral calculus will be 
employed. The representation of RVs as linear mappings also leads to the quantum 
decomposition of a random variable, using the number operator as well as ladder operators 
(creation, annihilation, preservation operator).  
 
Lecture 3: Vector Valued Random Variables, Random Fields, and Basic Algorithms for 
Uncertainty Quantification - Lecturer: Prof. Hermann G. Matthies - TU Braunschweig 
 
The description of vector valued random variables will continue the discussion started for 
parametrised models. Here the parameters are elements of a probability space in general, 
and more often specifically other random variables. Special cases of this general 
construction are random fields, as well as random fields of more structure, e.g. random fields 
of vectors, tensors, positive definite matrices, orthogonal matrices, and elements of Lie 
groups in general. Correlation and covariance operators of such objects will be considered, 
as well as their spectral analysis. This will continue the analysis ofthe first lecture, and also 
touch on the important subject of symmetries and how to deal with them, if one wants to 
preserve this under numerical approximation. This then leads to methods of describing 
random processes and fields, as well as probability distributions on infinite dimensional 
vector spaces, as well as to representations by higher order tensors which then opens the 
possibility for low-rank tensor approximations. The basic algorithmic or numerical problem 
addressed here is the so- called forward problem: given a mathematical problem involving 



uncertainty in the form input random variables, how does this affect the result, i.e. the 
solution of the governing equations. The algorithms addressed will be probabilistic ones, like 
those of the Monte Carlo family, as well as deterministic ones. Depending on which kind of 
descriptor one chooses for representation, different formulations and thus algorithms are 
suggested. This includes perturbation methods, the ones based on the Fokker-Planck 
equation, and the Monte Carlo (MC) and quasi Monte Carlo (QMC) ones. The deterministic 
ones will lean heavily on the functional analytic setting introduced in the previous lecture, 
and will remind many of the methods used to deal with partial differential equations, like 
Galerkin and collocation methods.  
 
Lecture 4: Inverse Problems and Bayesian Assimilation or Updating - Lecturer: Prof. 
Hermann G. Matthies - TU Braunschweig 
 
Inverse problems, and the connection to ill- and well-posed problems. Probabilistic 
approaches are based fundamentally on Bayes’s theorem, resp. more modern notions of 
conditioning. Conditional expectation will be used as the central concept. It will be introduced 
as projection, or even as a best approximation in a Hilbert space setting, a minimisation of a 
quadratic functional over a linear subspace — very reminiscent of Galerkin approximations. 
Connections with the classical theorems of Bayes and Laplace on conditional probability will 
be sketched, as well as the one with the notion of Radon-Nikodym derivative. The 
assimilation or updating step will be seen as change of expectation functional and thus the 
probability measure, or any of the other descriptors of random variables introduced 
previously. Depending on which kind of descriptor one wants to update, different 
formulations and thus algorithms are suggested. Historically the first ones were probabilistic 
ones based on sampling a Markov chain, which lead to Markov chain Monte Carlo 
algorithms. Completely different possibilities arise from the functional analytic view, and one 
can design algorithms based on Galerkin approximations. These algorithms change the 
probability measure to the conditioned one. In the lingo of physics, this can be seen as the 
Schrödinger picture, as the state changes. In parallel, and initially not connected to Bayesian 
updating, filtering algorithms were developed, such as the Kalman filter. The filtering 
algorithms do the update by changing the random variable, and leaving the basicexpectation 
functional, the state, untouched. This can be viewed as the Heisenberg approach in physics 
lingo, as the observable changes.  
 
Lecture 5: Bayesian Assimilation and Filtering, Proxy Models as Conditional 
Expectation - Lecturer: Prof. Hermann G. Matthies - TU Braunschweig 
 
Common filtering algorithms will be described as approximations to the conditional 
expectation. When focusing on the random variable itself or its functional representation as a 
function of other, known, RVs, instead of on any of the other descriptors, the idea of 
adjusting the RV to represent the new information suggests itself. The simplest kind of 
approximation turns out to be a linear one, and it connects with the Gauss-Markov theorem. 
This leads to linear filtering, especially to the Kalman filter (KF) and its further developments. 
Although the Kalman filter was, after connecting it with Bayesian updating, originally seen to 
only apply to Gaussian RVs, it is possible to extend the idea to the more general situation, 
resulting in the abstract Gauss-Markov-Kalman filter (GMKF). One by now well known 
implementation of the GMKF — although originally derived differently — is its Monte Carlo 
discretisation in form of the Ensemble Kalman filter (EnKF). A discretisation in the functional 



analytic setting leads to a numerical realisation on Wiener’s polynomial chaos, resulting in 
the polynomial chaos GMKF. It is also possible to go beyond linear filters, although this is 
rarely done. In an abstract setting, all these constructions are attempts to invert a 
non-invertible — usually high dimensional — mapping in some specific way reminiscent of 
conditional expectation, as described previously. By extending this idea, mainly probabilistic 
proxy models such as Kriging and Gaussian process emulation (GPE) can be seen as 
instances of approximate computation of a conditional expectation. The same is true of 
many of the models proposed for machine learning, such as deep neural networks. Similar 
remarks apply to the determination of reduced order models (ROMs). This point of view 
allows one to take other uncertainties, usually not considered in the computation of proxy 
models, into consideration. It also allows to use other measures of optimality in the 
computation.  
 
Lecture 6: Topological Vector Spaces of RVs and a View at Non-Commuting Algebras 
of RVs. - Lecturer: Prof. Hermann G. Matthies - TU Braunschweig 
 
To have a regularity theory for probabilistic equations — mirroring the regularity theory for 
partial differential equations, which is important in order to estimate possible convergence 
speeds of numerical discretisations — it is important to introduce notions of regularity and 
smoothness of RVs. This will be done by reviewing the methods used in the analysis of 
functions on finite dimensional vector spaces.This will establish connections with the theory 
of Schwartz distributions and generalised or wild RVs not representable as measurable 
maps. In the course of this Gelfand triples and chains of spaces of RVs will be used to 
construct countably Hilbertian spaces and ultimately nuclear spaces. This can be used to 
construct generalised random variables and "ideal elements". It allows the specification of 
not only analogues of all the classical spaces of random variables, but to go beyond this and 
address questions of "smoothness" on the one hand, and the definition of idealised elements 
resp. "generalised" random variables on the other hand. This very much echoes the 
construction of distributions resp. generalised functions in the sense of Sobolev and 
Schwartz. We shall touch on generalised polynomial chaos, the Hida-Kondratiev and 
Kondratiev spaces, and allude to the connections with Malliavin calculus and 
Malliavin-Sobolev spaces. This also connects with the iInteracting Fock-space view 
introduced earlier in the quantum decomposition of RVs using the number operator and 
associated ladder operators Turning to the subject of non-commutative algebras of RVs, 
striking differences between classical or commutative probability and non-commutative 
probability appear already with simple linear algebra. And possible novel devices like 
quantum computers or quantum information channels can be described in this setting. Such 
devices may soon be a possibility to use in scientific computing. This part of the lecture will 
only touch these subjects, but will try to introduce the main concepts on the basis of the 
theory outlined in the previous lectures. 
 
Lecture 7: Introduction to dimensionality reduction techniques - Lecturer: Prof. 
Giovanni Stabile - Sant’Anna School of Advanced Studies 
 
This lecture introduces modern strategies for the efficient approximation of 
parameter-dependent partial differential equations (PDEs). The first part covers the 
mathematical formulation of parametric PDEs and the need for reduced-order modeling in 
computational science and engineering. Classical linear reduction methods are then 



presented: Proper Orthogonal Decomposition (POD) for extracting low-dimensional 
structures from data, and greedy algorithms for the adaptive construction of reduced spaces 
with rigorous error control. Building on these foundations, the course explores nonlinear and 
data-driven reduction techniques, with a focus on autoencoders as a neural-network-based 
generalization of POD. Throughout the course, theoretical insights are complemented by 
algorithmic perspectives and computational examples, enabling students to compare 
projection-based and machine learning approaches for reduced modeling of complex 
parametric problems. 
 
Lecture 8: Approximation of the evolution of the latent coordinates - Lecturer: Prof. 
Giovanni Stabile - Sant’Anna School of Advanced Studies 
 
This lecture addresses non-intrusive strategies for reduced-order modeling of parametric 
partial differential equations, focusing on the approximation of latent coordinate dynamics 
obtained from projection- or data-driven model reduction techniques. Rather than relying on 
intrusive Galerkin projections of the governing equations, the evolution of reduced variables 
is reconstructed directly from data through regression-based surrogate models. We present 
and compare several approaches: Radial Basis Function (RBF) interpolation, offering a 
flexible mesh-free approximation scheme; Gaussian Process Regression, which combines 
probabilistic modeling with uncertainty quantification; and neural networks, which enable 
highly expressive, nonlinear mappings. Emphasis is placed on the trade-offs between 
accuracy, computational efficiency, and generalization capability across the parameter 
space. Applications to fluid and transport problems illustrate how these non-intrusive 
methods can extend reduced-order modeling to complex systems where classical intrusive 
approaches are impractical. 
 
Lecture 9: Introduction to POD Galerkin Methods and the reduced basis method - 
Lecturer: Prof. Giovanni Stabile - Sant’Anna School of Advanced Studies 
 
This lecture introduces intrusive projection-based techniques for the reduced-order modeling 
of parametric partial differential equations. We first present the Proper Orthogonal 
Decomposition (POD)-Galerkin framework, where reduced bases are extracted from solution 
snapshots and coupled with Galerkin projection to yield low-dimensional dynamical systems. 
We then discuss the Reduced Basis (RB) methodology, emphasizing its rigorous treatment 
of parameter dependence, certified error bounds, and offline–online decomposition for 
efficient many-query contexts. A central challenge in these methods lies in the efficient 
treatment of nonlinear terms; to this end, the lecture covers the Discrete Empirical 
Interpolation Method (DEIM) and related hyper-reduction strategies, which enable significant 
computational savings without compromising accuracy. Throughout, theoretical foundations 
are complemented by algorithmic insights and illustrative applications, highlighting the 
strengths and limitations of intrusive approaches compared to emerging non-intrusive 
alternatives. 


